顶部右侧
顶部左侧
当前位置:首页 > 高中数学 > 正文

函数高中数学,函数高中数学知识点

bsmseo 发布于2025-01-16 11:54:32 高中数学 48 次

大家好,今天小编关注到一个比较有意思的话题,就是关于函数高中数学的问题,于是小编就整理了2个相关介绍函数高中数学的解答,让我们一起看看吧。

  1. 高中数学学几种函数?
  2. 高中数学函数题型及解题技巧?

高中数学学几种函数?

高中数学八大函数是:幂函数,指数函数,对数函数,反函数,一次函数,二次函数,反比例函数,对勾函数。

函数高中数学,函数高中数学知识点
(图片来源网络,侵删)

函数的性质:

折叠函数有界性:设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。

函数高中数学,函数高中数学知识点
(图片来源网络,侵删)

如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上***。

函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。

函数高中数学,函数高中数学知识点
(图片来源网络,侵删)

折叠函数的单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的。

如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。

高中数学函数题型及解题技巧?

一、定义域

不同的函数的定义域是不同的,一定要把不同函数的定义域都记牢,这样做题才能清晰有思路,

常见几种函数的定义域:

(1)分数函数中分式的分母不为零;

(2)偶次方根下的数(或式)大于或等于零;

(3)指数式的底数大于零且不等于一;

(4)对数式的底数大于零且不等于一,真数大于零。

二、值域

求函数的值域也有不同的方法,最常见的有如下几种:

(1)配方法:求二次函数值域最基本的方法之一。例求函数y=x2-2x+5,x属于[-1,2]的值域。这道题的最好方法是用配方法,通过完全平方公式配成y=(x-1)2+4,然后根据定义域求最值。

(2)判别式法:对二次函数或者分式函数(分子或分母中有一个是二次)都可通用。

(3)反函数法:直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

(4)函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。

三、单调性

单调性的重要作用就是推出该函数的导数是否大于0或者小于0,如下面题目的应用:已知a>0,函数f(x)=x3-ax在x>1或等于1上是单调增函数,则a的最大值是()

这道题可以通过函数的导数解答:设f(x)的导函数为t(x)=3x2-a,因为x大于等于1,所以a的最大值为3。

四、奇偶性

判断函数奇偶性主要要两种方法,分别是定义定义域法以及奇偶函数定义法,下面为大家一一介绍:

(1)定义域法:一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数。

(2)奇偶函数定义法:在给定函数的定义域关于原点对称的前提下,计算f(-x),然后根据函数的奇偶性的定义判断其奇偶性

到此,以上就是小编对于函数高中数学的问题就介绍到这了,希望介绍关于函数高中数学的2点解答对大家有用。

查看更多有关于 的文章。

转载请注明出处:http://www.tivgjtz.cn/post/133687.html

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。
最新文章
热门文章
最近发表
友情链接