bsmseo 发布于2024-06-08 13:42:07 高中数学 41 次
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修5数列求和的问题,于是小编就整理了2个相关介绍高中数学必修5数列求和的解答,让我们一起看看吧。
首项×项数+【项数(项数-1)×公差】/2
{【2首项+(项数-1)×公差】项数}/2
n = 100x(1+0.05)^n
Sn = a1+a2+...+an
= 100x(1+0.05) x[ (1+0.05)^n - 1 ] /[ (1+0.05) -1 ]
=2100 x [ (1+0.05)^n - 1 ]
到n年,加起来的总数是多少
=Sn
=2100 x [ (1+0.05)^n - 1 ]
这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。
等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。
公差是一的等差数列,求和公式为
Sn=1/2 n(n+1),
规律是:第一个数和最后一个数的和是n+1,一共是n/2对,所以和为 n/2×(n+1);
如果公差不是一,n进行相应替换即可
递增数列指的是每一项比前一项都要大固定的数列。例如,1,3,5,7,9就是一个递增数列,每一项比前一项大2。
递增数列的总和公式如下:
S = n[2a + (n - 1)d]/2
其中,S表示递增数列的总和,n表示数列的项数,a表示首项,d表示公差。
例如,求1,3,5,7,9这个递增数列的前5项和。显然,n=5,首项a=1,公差d=2。带入公式,得到:
S = 5[2×1 + (5-1)×2]/2 = 5[2+8]/2 = 5×10/2 = 25
因此,1,3,5,7,9这个递增数列的前5项和为25。
递增数列的求和公式是:(首项+末项)*项数/2。数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。
983 通项公式: An=A1+(n-1)
d An=Am+(n-m)
d 等差数列的前n项和: Sn=[n(A1+An)]/
2 Sn=nA1+[n(n-1)d]/
2 等差数列求和公式:等差数列的和=(首数+尾数)*项数/2; 项数的公式:等差数列的项数=[(尾数-首数)/公差]+1.
1、等差数列求和公式:Sn=(a1+an)n/2 ;Sn=na1+n(n-1)d/2(d为公差);Sn=An2+Bn;A=d/2,B=a1-(d/2)。
2、文字表示方法:等差数列基本公式:末项=首项+(项数-1)×公差;项数=(末项-首项)÷公差+1;首项=末项-(项数-1)×公差;和=(首项+末项)×项数÷2;差:首项+项数×(项数-1)×公差÷2。
等差数列就是从第二项起,每一项与前一项的差都是一个常数,这个数列就是等差数列,常数是公差。它的求和公式是n(a1+an)/2,n是项数,a1是首项,an是末项。
到此,以上就是小编对于高中数学必修5数列求和的问题就介绍到这了,希望介绍关于高中数学必修5数列求和的2点解答对大家有用。
转载请注明出处:http://www.tivgjtz.cn/post/89575.html
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学导函数的问题,于是小编就整理了2个相关介绍高中数学导函数的解...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学公式总结的问题,于是小编就整理了5个相关介绍高中数学公式总结...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学书答案的问题,于是小编就整理了2个相关介绍高中数学书答案的解...
大家好,今天小编关注到一个比较有意思的话题,就是关于人教版高中数学目录的问题,于是小编就整理了5个相关介绍人教版高中数学...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学一轮复习的问题,于是小编就整理了3个相关介绍高中数学一轮复习...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修3高考题的问题,于是小编就整理了5个相关介绍高中数学必修...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修二函数的定义的问题,于是小编就整理了1个相关介绍高中数学...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修5第49节的问题,于是小编就整理了3个相关介绍高中数学必...
大家好,今天小编关注到一个比较有意思的话题,就是关于上饶高中数学必修课教程的问题,于是小编就整理了4个相关介绍上饶高中数...
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学选择性必修试卷的问题,于是小编就整理了3个相关介绍高中数学选...